车牌识别是利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。技术的重点包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。要让车牌辨识系统真正做到小兵立大功,工程商们还需要掌握两个原则,一是重视稳定度,二是确实实测。
1) 牌照定位,定位图片中的牌照位置;
2) 牌照字符分割,把牌照中的字符分割出来;
3) 牌照字符识别,把分割好的字符进行识别,组成牌照号码。
车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,小区号牌识别价格,通常与车牌识别互相配合、互相验证。
1) 牌照定位
自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,小区号牌识别厂家,选定一个较佳的区域作为牌照区域,并将其从图像中分离出来。
2) 牌照字符分割
完成牌照区域的定位后,再将牌照区域分割成单个字符,小区号牌识别软件,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部较小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。
3) 牌照字符识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择较佳匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。
车牌识别系统识别率低的影响因素及解决方法:
1.受车辆行驶速度影响
车牌识别的相机会从连续播放的图片里选出其中的一张作为输出画面,号牌识别,然后在其中选取不同的帧数作为识别图片,从而达到视频识别的效果,所以这样就会出现当车速过快时,容易掉帧,识别不出来的情况,这种情况下大部分车牌识别系统厂家是通过添加一个减速带来解决。
号牌识别-北京泰利德公司-小区号牌识别价格由北京泰利德科技有限责任公司提供。北京泰利德科技有限责任公司在一卡通管理系统这一领域倾注了诸多的热忱和热情,泰利德一直以客户为中心、为客户创造价值的理念、以品质、服务来赢得市场,衷心希望能与社会各界合作,共创成功,共创辉煌。相关业务欢迎垂询,联系人:张新胜。