机器学习模型利用机器学习与数据挖掘方法,提取土壤属性与环境变量之间的关系用来预测土壤属性的空间分布,可以解决土壤属性与环境变量的非线性问题,包括随机森林人工神经网络分类与回归树等。目前随机森林法进行属性制图在数据挖掘方法中应用广泛。
模糊推理是将土壤与环境关系表达为隶属度值,土壤普查,利用单个土壤样点在空间上的代表性推测土壤目标变量的空间变化。该方法制图效果依赖于单个样点的可靠性,要求对样点的可靠性进行质量检查。上述方法有两个制约需要大量的土壤样点来提取统计关系;需要具有较好的空间代表性,土壤普查外业调查采样调查第三方,除机器学习模型外,其它模型制图区域通常不宜过大。
建立制图模型前,数据检验须符合制图模型的数学假设。制图方法多采用数学模型,基于统计均值和平均关系的制图方法,要求样本符合相应的数学假设,例如符合正态分布。样本需验证并符合相关数学假设条件,方可进行模型制图。3精度保障原则
数字土壤制图结果,土壤普查外业调查采样公司,需要进行预测样点验证,评估模型的制图精度。随机选取20%的样点,土壤普查数据汇交,比较实测值与预测值;也可以采取全样点交叉验证,来验证制图的精度,通过相应的验证指标评估后,制图结果方可采用作为数据成果。对于争议比较大或与经验出现巨大差异的图斑区域,需进行实地勘察验证。
表2制图比例尺及对应的栅格数据像素分辨率小比例尺1100万1000150万250中比例尺125万90110万5015万30例尺11万5建议像素分辨率m比例尺类型成图比例尺栅格数据(适用于大范围土地利用种植结构比较单一区域)表1制图比例尺及对应的栅格数据像素(像元)分辨率
利用土壤属性与环境辅助变量之间的相关性模型,需使用环境变量数据。目前主要利用除时间因素外的成土因素信息。特别是在地面有起伏的区域,因样点数量的局限,可采用此类模型提高制图精度。这类模型均需提取栅格格式图层数据参与模型制图。2环境变量的提取1400万1000小比例尺1100万250150万90中比例尺125万3015万10例尺11万5(适用于小范围种植结构复杂或地块破碎区域)
土壤普查外业调查采样调查第三方-土壤普查-得正工程由山东得正工程测绘有限公司提供。山东得正工程测绘有限公司拥有很好的服务与产品,不断地受到新老用户及业内人士的肯定和信任。我们公司是商盟认证会员,点击页面的商盟客服图标,可以直接与我们客服人员对话,愿我们今后的合作愉快!