




沸石滤料作为工作更换的可行性方案
沸石滤料是滤池工作的,而且更换起来相对容易一些,因此更换沸石滤料就成为可行性的方案,虽然*近研究比较多的改性沸石滤料和纯铜沸石滤料相比通过改变沸石滤料的表面性能,提高过滤的效果,但是由于去除污染物有限,并且刚刚处于起步阶段,技术没有成型,目前真切应用到实践的很少,所以并不如三层滤池技术成熟,并不是俱佳的选择。
三层沸石滤料滤池时一种反粒度过滤形式,现在 应用的比较广泛,运行也都比较稳定。与单层石英砂沸石滤料滤池相比,三层沸石滤料滤池具有含污能力更高、提高滤速、延长过滤周期,改善滤后水质、提高有机物和水中浮游生物及细菌的去除率,是出水的水质更好的特点,从而在满足出水水质的条件下能够更大限度的节约沉淀池的用药量,无论是用于新建滤池,还是对旧滤池挖潜改造,都有很大的技术经济意义,为此提出了更换三层沸石滤料的实验方案。研究三层沸石滤料的过滤性能并对比了石英砂沸石滤料对浊度的去除效果。
沸石的晶体构造
沸石分子筛的晶体结构可分为三个组分:(1)铝硅酸盐骨架,(2)骨架中含有可交换阳离子m的孔洞,(3)位相水分子,活化沸石多少钱,即沸石水。
沸石的结构不同于石英和长石。石英和长石的骨架结构相对紧密,比重为2.6-2.7;沸石的骨架结构相对稀疏,比重为2.0-2.2。脱水空腔可大达47%,如菱晶石,甚至50%如合成沸石。
在长石结构中,金属离子被限制在由氧离子组成的晶体骨架的空隙中。除非晶体被破坏,否则这些金属阳离子很难自由移动。当Ca交换Na或K时,必须同时进行Si和Al的置换,即成对置换,这必然会引起Si/AI比值的变化。
在类长石结构中,金属离子分布在相对开放的互联空间中,比重为2.14~2.45。阳离子可以通过结构途径相互交换而不破坏晶体结构。方钠石和霞石曾被认为是沸石族矿物。
在分子筛结构中,金属阳离子位于晶体结构较大的孔或空穴中,并相互连接。因此,阳离子可以通过通道自由交换而不影响晶体结构。沸石中易发生2(Na,K)(Ca2+)的交换,而长石中不易发生。这种交换形式可能是离子交换的一种形式,限于沸石和类似矿物。
一般来说,沸石分子筛的水分子是弱的,与骨架离子和可交换的金属离子松弛。这些水分子比阳离子更自由地移动和进出通道。在热的作用下,它可以自由地分离和附着,而不影响其骨架结构。
沸石转轮有机废气治理技术利用疏水性沸石吸附剂呈现强烈的疏水亲油特性,具有尺寸均匀的孔道、较大的比表面积和较大的吸附容量,在不同的温度下沸石吸附剂的有效吸附孔道对VOCs吸附力不同的特点进行设计。
低温条件下,南京活化沸石,需要治理的有机废气通过系统主风机的作用送至沸石转轮,废气中的VOCs分子被沸石吸附剂吸附净化。沸石转轮按照一定的转速,在旋转电机的带动下连续运转。在沸石转轮的脱附解吸区,采用浓缩倍率下的风量,解吸温度一般为200℃,反方向对沸石转轮的脱附解吸区进行吹扫再生。解吸再生后的高浓度废气,送入后端的废气氧化系统进行热氧化处理。沸石转轮净化后的气体与热氧化设备净化后的气体在烟囱混合后,活化沸石生产,相关VOCs排放指标可满足相关国家及地方排放标准。
近年来,沸石转轮废气治理工艺在大风量、低浓度有机废气行业得到普遍的认可与应用。随着沸石转轮废气治理工艺越来越多的应用,废气中高沸点有机物对沸石转轮的影响也日渐暴露出来。
当再生温度低于VOCs的沸点时,VOCs不易被脱附,且随着VOCs沸点的增大脱附难度增加。对于沸石转轮而言,当VOCs的沸点高于沸石转轮的脱附再生温度(200℃)时,则高沸点的有机物在正常解吸温度下,难以的从沸石转轮解吸。
活化沸石多少钱-红花山沸石(在线咨询)-南京活化沸石由芜湖红花山沸石矿业有限公司提供。活化沸石多少钱-红花山沸石(在线咨询)-南京活化沸石是芜湖红花山沸石矿业有限公司今年新升级推出的,以上图片仅供参考,请您拨打本页面或图片上的联系电话,索取联系人:张经理。