由于CNN强大的特征提取能力,采用基于CNN的分类网络目前已成为表面缺陷分类中的模式一般来说,现
有表面缺陷分类的网络常常采用计算机视觉中现成的网络结构,包括AlexNet, VGG, GoogL eNet,ResNet,
SENet,检测中文字符, ShuteNet,MobileNet等。利用分类网络结合上滑动窗口的方式可以实现缺陷的定位。
Deep learning-based crack damage detection using convolutional neural networks
节约成本:通过早期检测和修复缺陷,可以避免因缺陷导致的后期修复和维护成本的增加。此外,通过缺陷检测,还可以提高生产效率,减少资源和材料的浪费。
增强信任和声誉:对于制造商和供应商而言,ocr字符检测,进行缺陷检测并确保产品质量,可以增强客户对其产品的信任和满意度,进而提升企业的声誉和竞争力。
本发明的目的在于提供一种高精度、、检测的镜头缺陷检测方法。
为实现上述目的,字符检测,本发明提供一种镜头缺陷检测方法,包括:
s1、对镜头的端面、凸台进行缺陷检测;
骤s1包括:
s11、在所述镜头的端面或凸台上制作模板图像获得端面图片和凸台图片,并进行匹配定位;
s2、对镜头内部结构进行缺陷检测;
s3、对镜头上表面和下表面进行缺陷检测。
字符检测-苏州宣雄智能-字符检测系统由苏州宣雄智能科技有限公司提供。行路致远,砥砺前行。苏州宣雄智能科技有限公司致力成为与您共赢、共生、共同前行的战略伙伴,更矢志成为检测仪具有竞争力的企业,与您一起飞跃,共同成功!