1.1缺陷的定义
当前对于缺陷有两种认知的方式,种是有监督的方法,也就是体现在利用标记了标签(包括类别、矩形框
或逐像素等)的缺陷图像输入到网络中进行训练.此时"缺陷意味着标记过的区域或者图像。第二种是无监督的
方法,就是将正常无缺陷的样本进行学习,学习正常区域的特征,外观缺陷检测,网络检测异常的区域。
缺陷检测的任务大致分为三个阶段分别是缺陷分类、缺陷定位、缺陷分割,缺陷检测,如下图所示,缺陷分类需要分类出
缺陷的类别(色、空洞、经线) ; 缺陷定位不仅需要获取缺陷的类别还需要标注出缺陷的位置; 缺陷分割将
缺陷逐像素从背景中分割出来。
字符检测,产品缺陷检测,又叫OCR或OCV检测,是专门对各种电子元器件、手机键盘、电脑键盘等物品表面上印刷或雕刻的字符进行识别和检测,常见的字符包括数字、英文字母、符号、汉字等。目前国内外不少研究机器视觉的企业开发了相应的检测软件,进行简单设定后,即可对被检测字符自动识别、检测,如有异常发生,可提示报警或者控制机器停机。对不符合要求的工件检测后可输出控制信号,剔除不合格品,自能化程度相当高。
随时技术的发展,也出现了采用固定式或动态阈值分割方式进行检测的算法,但此方法同样存在缺陷:
1、镜头镜片区域结构纹理复杂,摄像头缺陷检测,单一的阈值方法不能区分缺陷和产品本身结构;
2、镜头的端面、凸台区域,存在大量的纹理干扰,现有的阈值方法难以进行有效分割缺陷;
3、现有方法采用定焦采图的方式,获得的缺陷尺寸不准确,导致漏检率难以控制。
外观缺陷检测-缺陷检测-宣雄智能由苏州宣雄智能科技有限公司提供。苏州宣雄智能科技有限公司是从事“缺陷检测,摄像头缺陷检测”的企业,公司秉承“诚信经营,用心服务”的理念,为您提供更好的产品和服务。欢迎来电咨询!联系人:朱秀谨。