




由于CNN强大的特征提取能力,在线字符检测,采用基于CNN的分类网络目前已成为表面缺陷分类中的模式一般来说,现
有表面缺陷分类的网络常常采用计算机视觉中现成的网络结构,包括AlexNet, VGG, GoogL eNet,ResNet,
SENet, ShuteNet,MobileNet等。利用分类网络结合上滑动窗口的方式可以实现缺陷的定位。
Deep learning-based crack damage detection using convolutional neural networks

下面结合附图和具体实施方式对本发明作详细地描述,实施方式不能在此一一赘述,检测中文字符,但本发明的实施方式并不因此限定于以下实施方式。
如图1所示,本发明的镜头缺陷检测方法包括s1、对镜头的端面、凸台进行缺陷检测;s2、对镜头内部结构进行缺陷检测;s3、对镜头上表面和下表面进行缺陷检测。根据本发明的构思,昆山字符检测,本发明的检测方法在实际操作中,检测方法的步骤s1、步骤s2和步骤s3是可以任意调换的。
本发明对于镜头上下表面的检测,通过镜片区域减去屏蔽区域获得有效检测区域,并将多张图片的有效检测区域进行融合,进行一次缺陷检测,有效提升了检测结果的准确性。
具体实施方式
为了更清楚地说明本发明实施方式或现有技术中的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
字符检测系统-昆山字符检测-宣雄智能由苏州宣雄智能科技有限公司提供。苏州宣雄智能科技有限公司在检测仪这一领域倾注了诸多的热忱和热情,宣雄一直以客户为中心、为客户创造价值的理念、以品质、服务来赢得市场,衷心希望能与社会各界合作,共创成功,共创辉煌。相关业务欢迎垂询,联系人:朱秀谨。