









物体识别的主要方法
基于统计的方法与基于物体部件的方法:
根据识别方法是否对局部特征之间的关系建模,可以把识别方法分为基于统计的方法与基于物体部件的方法。
1、基于统计的物体分类方法(BoW:Bag of Words)
BoW模型严格上讲并不是一种物体识别方法,而是一种物体分类方法。这种模型的灵感来自于NLP中的BoW模型。。一幅图像可以看作是一篇“文档”,而图像中提取出的特征认为是“词语”。
1)生成性方法的学习与识别
生成性的学习方法通过先验知识去拟合并解释图像中的信号。在中,有两种主要的生成性方法,一种是NB(朴素贝叶斯),另外一种是pLSA(概率潜语义分析)与LDA(线性判别分析)。
物体识别的主要方法
基于物体部件的识别
前述BoW的一个主要缺陷就是没有对特征之间的关系进行建模,三维物体识别厂家,因此无法刻画各个特征在空旬中的顺序关系。基于物体部件方法的出发点正是要解决这个问题。在这里物体部件的定义并不一定是指高层语义上的物体部件例(如眼睛、鼻子之于人脸),也可以是一些底层的图像特征,三维物体识别设备,例如图像或者点特征。
物体识别的性能评估方法
判定物体识别的性能通常采用PR曲线。其中P(Precision)指精度(准确率),三维物体识别,一般为y轴;R(Recall)指识别率(召回率),一般为x轴。
P=(识别正确的结果)/(所有识别结果);R=(识别正确的结果)/(实际上正确的结果)。识别结果的类型如下:
一个好的识别方法应该同时具备高的准确率与高的召回率。准确率等于0.5是一个界限,当精度低于0.5时,说明该方法的效率己经低于随机猜测的结果,三维物体识别方案,(因为随机猜测的准确率为0.5)。除了PR曲线,也有文献使用其它曲线来度量识别结果,如ROC曲线或FPPW等。三维物体识别-北京华奕科技-三维物体识别厂家由北京华奕互动科技有限公司提供。北京华奕互动科技有限公司在电子、电工产品制造设备这一领域倾注了诸多的热忱和热情,华奕科技一直以客户为中心、为客户创造价值的理念、以品质、服务来赢得市场,衷心希望能与社会各界合作,共创成功,共创辉煌。相关业务欢迎垂询,联系人:程帅。