









物体识别的困难与前景
虽然物体识别已经被广泛研究了很多年,研究出大量的技术和算法,物体识别方法的健壮性、正确性、效率以及范围得到了很大的提升,三维物体识别系统,但是现在依然存在一些困难以及识别障碍。这些困难主要有:
知识导引问题:
同样的图像在不同的知识导引下,会产生不同的识别结果,知识库的建立不仅要使用物体的自身知识,三维物体识别,如颜色、纹理、形状等,也需要物体间关系的知识,知识库的有效性与准备性直接影响了物体识别的准确性。
物体识别
此时的主流方法是只从图像本身考虑,而不去管物体原来的三维形状。这类方法统一叫做appearance based techniques。所谓appearance, 从模式识别的角度去描述的话,就是图像特征(feature),即对图像的一种抽象描述。有了图像特征,就可以在这个特征空间内做匹配,或者分类。然 而这个方法还是存在很多问题,三维物体识别方案,首先它需要我们对所有的图片进行对齐,像人脸图像,就要求每一幅图中五官基本在固定的位置。但是很多应用场景下,目标并不是 像人脸那么规整,很难去做统一对齐,而且这种基于全局特征和简单欧式距离的检索方法,对复杂背景,遮挡,和几何变化等并不适用。
物体识别
当时MIT的计算机老师组织了一个面向本科生的两个月的Summer Project。这个Project的目的是设计一个系统,能够智能识别场景里头的物体,并区分出类别。当时他们低估了这个问题的难度,结果可想而知。
原因是我们看到的这个物体的样子,只是它在某种背景下某一种光线条件下特定角度的投影的,换一个角度可能就是完全不同的样子。即使是同一个物体,例如人,躺着或者站着,形态都是不一样的。
三维物体识别系统-三维物体识别-华奕科技(查看)由北京华奕互动科技有限公司提供。北京华奕互动科技有限公司实力不俗,信誉可靠,在北京 北京市 的电子、电工产品制造设备等行业积累了大批忠诚的客户。华奕科技带着精益求精的工作态度和不断的完善创新理念和您携手步入辉煌,共创美好未来!