





本发明对于镜头上下表面的检测,通过镜片区域减去屏蔽区域获得有效检测区域,并将多张图片的有效检测区域进行融合,进行一次缺陷检测,有效提升了检测结果的准确性。
具体实施方式
为了更清楚地说明本发明实施方式或现有技术中的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员而言,字符识别检测,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
检测对象:钢表面缺陷
主要方法:基于Faster R-CNN的带钢表面缺陷检测网络,字符检测系统,该网络的改进在于提出的多级特征融合网络( MFN )
将多个分层特征组合成一个特征 ,可以包括缺陷的更多位置细节。基于这些多级特征,采用区域提议网络
( RPN )生成感兴趣区域( ROI ) .在缺陷检测数据集NEU-DET.上,提出的方法在采用ResNet-50的
backbone"下实现了82.3%的mAP。

江苏字符检测-苏州宣雄-字符检测系统由苏州宣雄智能科技有限公司提供。行路致远,砥砺前行。苏州宣雄智能科技有限公司致力成为与您共赢、共生、共同前行的战略伙伴,更矢志成为检测仪具有竞争力的企业,与您一起飞跃,共同成功!