




根据本发明的一个方面,在所述步骤s33中,对所述检测图片进行分割的方法包括全局阈值分割方法、动态阈值分割方法或均值阈值分割方法。
本发明的镜头缺陷检测方法,能够对镜头进行的检测,包括对镜头端面和凸台的缺陷检测、对镜片区域内尘、内脏、脱模、毛丝等缺陷检测、对镜片、胶水、镜筒伤的检测和对镜头上表面和下表面的检测。并且检测方法具有高精度、的优点。
在针对本发明的实施方式进行描述时,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”所表达的方位或位置关系是基于相关附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,隐形眼镜缺陷检测哪里好,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,隐形眼镜缺陷检测品牌,因此上述术语不能理解为对本发明的限制。
由于CNN强大的特征提取能力,采用基于CNN的分类网络目前已成为表面缺陷分类中的模式一般来说,现
有表面缺陷分类的网络常常采用计算机视觉中现成的网络结构,隐形眼镜缺陷检测价格,包括AlexNet,隐形眼镜缺陷检测, VGG, GoogL eNet,ResNet,
SENet, ShuteNet,MobileNet等。利用分类网络结合上滑动窗口的方式可以实现缺陷的定位。
Deep learning-based crack damage detection using convolutional neural networks

隐形眼镜缺陷检测哪里好-隐形眼镜缺陷检测-苏州宣雄智能由苏州宣雄智能科技有限公司提供。行路致远,砥砺前行。苏州宣雄智能科技有限公司致力成为与您共赢、共生、共同前行的战略伙伴,更矢志成为检测仪具有竞争力的企业,与您一起飞跃,共同成功!