






90年代以后,随着计算机处理能力和重建算法的不断改进,CT在材料领域的应用得到了进一步扩展,高分辨率、原位CT以及时间分辨CT等新技术逐渐发展起来,为材料科学家提供更多研究手段和突破性的成果。
本章将就X射线CT或μ-CT的一些基本原理进行技术解读,包括X射线的产生、与物质的相互作用及图像的形成。
μ-CT与普通CT的区别空间分辨率:普通CT的空间分辨率一般在几十到几百微米级别,而μ-CT可以实现亚微米甚至纳米级别的空间分辨率。这使得μ-CT在研究微小结构、细胞组织、颗粒分布等细致特征时更为有效。样品尺寸:μ-CT适用于较小的样品。普通CT主要用于大型物体(如人体),而μ-CT适用于更小的样品,例如昆虫、生物标本、微观器件等。由于其较高的空间分辨率,μ-CT能够提供更详细的内部结构信息。辐射剂量:μ-CT需要更低的辐射剂量。普通CT对人体的辐射剂量相对较高,因为它需要穿透较大的物体。应该领域:μ-CT主要应用于微观组织、纳米材料、纳米器件、生物样品等领域。普通CT则主要用于医学诊断,例如扫描人体内部的和骨骼结构。
单色性对于双能量应用也是至关重要的,如K边减影(KES)成像。这种技术利用了K吸收边附近能量的元素对X射线吸收的巨大差异。
在生物医学成像中,自雅各布森(B.-Jacobson)于1953年应用该技术以来,KES已被广泛应用于血管研究。在两种能量下获得的两幅图像,即一幅在K边缘之上,一幅在K边缘之下,对数相减后就得到了碘分布的图像。
利用SR光束的高强度,成果显示可以尽可能缩短扫描时间,从而实现对动态过程的快速、实时研究(4DCT)。

要描述图像的形成,必须从单个X射线光子的相互作用过程,到考虑到吸收和散射的X射线光束的定量衰减。一般来说,X射线成像背后的机制可以用样品的复折射率来解释。在宏观层面上,小动物双能X射线,均质材料(即密度和原子序数Z一致)对单能量入射X射线光束的吸收可以用以下公式描述其中,I 为光束穿过物质后的强度,I0为入射强度;Δx为材料厚度。μ称为线性衰减系数,由光电效应、康普顿效应和相干散射效应的线性组合给出。
以上公式被称为比尔-朗伯定律。显然,μ值高物体比μ值低的物体更能衰减X射线。例如,在医学成像中,骨骼(高μ值)比软组织(低μ值)对X射线光子的衰减更大。在处理非均匀物体(即由多个具有不同吸收系数的较小均匀元素组成的物体)时,单个元素的入射强度由前一个元素的出射强度给出。将这一概念以级联的方式重复应用于每一个元素

小动物双能X射线-多博(在线咨询)由武汉多博科技有限公司提供。“MicroCT检测服务,MicroCT扫描,动物影像学检测”选择武汉多博科技有限公司,公司位于:武汉市洪山区街道口珞珈山附7号珞珈山大厦A座1904,多年来,多博科技坚持为客户提供好的服务,联系人:李总。欢迎广大新老客户来电,来函,亲临指导,洽谈业务。多博科技期待成为您的长期合作伙伴!