









物体识别的步骤
图片的预处理
预处理几乎是所有计算机视觉算法的一步,其动机是尽可能在不改变图像 承载的本质信息的前提下,使得每张图像的表观特性(如颜色分布,整体明暗, 尺寸大小等)尽可能的一致,主要完成模式的采集、模数转换、滤波、消除模糊、减少噪声、纠正几何失真等操作。
预处理经常与具体的采样设备和所处理的问题有关。例如,图像识别物体系统,从图象中将汽车车牌的号码识别出来,就需要先将车牌从图像中找出来,再对车牌进行划分,将每个数字分别划分开。做到这一步以后,才能对每个数字进行识别。以上工作都应该在预处理阶段完成。在物体识别中所用到的典型的预处理方法不外乎直方图均衡及滤波几种。像高斯模糊可以使之后的梯度计算更为准确;而直方图均衡可以克服一定程度的光照影响。值得注意的是,有些特征本身已经带有预处理的属性,因此不需要再进行预处理操作。
物体识别的主要方法
基于统计的方法与基于物体部件的方法:
根据识别方法是否对局部特征之间的关系建模,可以把识别方法分为基于统计的方法与基于物体部件的方法。
1、基于统计的物体分类方法(BoW:Bag of Words)
BoW模型严格上讲并不是一种物体识别方法,图像识别物体制作,而是一种物体分类方法。这种模型的灵感来自于NLP中的BoW模型。。一幅图像可以看作是一篇“文档”,而图像中提取出的特征认为是“词语”。
1)生成性方法的学习与识别
生成性的学习方法通过先验知识去拟合并解释图像中的信号。在中,有两种主要的生成性方法,图像识别物体,一种是NB(朴素贝叶斯),图像识别物体厂家,另外一种是pLSA(概率潜语义分析)与LDA(线性判别分析)。
物体识别的步骤
图像特征提取就是提取出一幅图像中不同于其他图像的根本属性,以区别不同的图像。如灰度、亮度、纹理和形状等等特征都是与图像的视觉外观相对应的;而还有一些则缺少自然的对应性,如颜色直方图、灰度直方图和空间频谱图等。基于图像特征进行物体识别实际上是根据提取到图像的特征来判断图像中物体属于什么类别。形状、纹理和颜色等特征是较常用的视觉特征,也是现阶段基于图像的物体识别技术中采用的主要特征。
图像识别物体-华奕互动-图像识别物体厂家由北京华奕互动科技有限公司提供。北京华奕互动科技有限公司为客户提供“电子翻书,互动投影,全息成像,滑轨电视,投影融合,电子沙盘”等业务,公司拥有“华奕互动”等品牌,专注于电子、电工产品制造设备等行业。,在北京市房山区辰光东路16号启航国际三期8号楼11层1110室的名声不错。欢迎来电垂询,联系人:程帅。