音圈电机的原理
机械系统原理 音圈电机经常作为一个由磁体和线圈组成的零部件出售。线圈与磁体之间的较小气隙通常是(0. 254~0. 381) mm,根据需要此气隙可以增大,只是需要确定引导系统允许的运动范围,同时避免线圈与磁体间摩擦或碰撞。多数情况下,移动载荷与线圈相连,河北出轴电机,即动音圈结构。 其优点是固定的磁铁系统可以比较大,因而可以得到较强的磁场;缺点是音圈输电线处于运动状态,容易出现断路的问题。同时由于可运动的支承,运动部件和环境的热接触很恶劣,动音圈产生的热量会使运动部件的温度升高,出轴电机供应商,因而音圈中所允许的较大电流较小,当载荷对热特别敏感时,可以把载荷与磁体相连,即固定音圈结构。该结构线圈的散热不再是大问题,线圈允许的较大电流较大,但为了减小运动部分的质量,采用了较小的磁铁,因此磁场较弱。

音圈电机的磁路形式
磁路设计就是要以较少的永i久磁铁和导磁材料来产生具有高磁通密度且分布均匀的磁场。为音圈直线电机典型的磁路形式。根据永1久磁铁所处位置、磁场方向以及气隙与线圈的相对长度,可以划分为几种不同的磁路类型。
(1)内磁型和外磁型。,内磁结构的磁铁包覆在导磁材料内部,具有遮蔽效果,故磁漏较小。所示外磁结构的磁铁外露,磁漏较多,需要有遮蔽,以避免产生干扰。这种电机一般尺寸较长,出轴电机安装,磁阻较大,但线圈的电感较小。
音圈电机工作原理
音圈电机的工作原理与电动式扬声器类似,出轴电机报价,即在磁场中放入一环形绕组,绕组通电后产生电磁力,带动负载作直线运动;改变电流的强弱和极性,即可改变电磁力的大小和方向。 音圈电机的设计应遵循以下几个基本原则: (1)在电机体积给定的情况下,应尽可能增加气隙磁密与线圈总长度的乘积,以提高单位电流1产生的磁推力。 (2)减小漏磁,降低磁路的饱和程度,从而减小电机的体积。 (3)合理设计电机定子和动子的轴向长度,以得到平滑的“力-位移”曲线。
