






高黏度流体搅拌器的设计要素
高黏度流体的搅拌器设计,一直是搅拌混合领域中一个很重要的课题。
在我们用多种叶轮对高黏度牛顿流体以及非牛顿流体的混合进行了试验后发现,一个的高黏度液体搅拌器,至少具备两个条件:1.叶轮能提供强有力的剪切,这是减小浓度斑尺寸即分离尺寸的必要条件,如前所述,只有浓度斑足够小,才能产生大面积的界面,促进分子扩散,从而快速达到分子级的混合效果,例如螺带式叶轮和锚式叶轮,通常其d/D都在0.9/0,97左右,即都是所谓近壁型叶轮,在叶轮端部与罐壁之间会产生强烈的剪切,在此消耗了搅拌功率的90%左右。2.由于高剪切区总是只占有罐体积的一小部分,不锈钢搅拌器,因此只有叶轮能使液体在罐内进行快速的循环,使高剪切区和低剪切区的液体快速交换,才能使全罐快速地达到均匀混合。
长久以来,业内存在这样一种观点,对于近壁型搅拌器,其剪切总是足够的,决定搅拌器混合能力的是叶轮的循环能力,并且还认为要达到全罐均匀混合,液体至少要在罐内循环三次。因此,搅拌器生产,哪种叶轮能以短时间完成三次循环,那一种叶轮便是混合速率快的叶轮。这一结论,长时间以来被应用在搅拌器的设计中。然而近年来一些具有复杂传动机构的搅拌器,如在回转的同时进行上、下移动的复动搅拌器和使叶轮往复摆动的往复式搅拌器等,此类搅拌器会产生速度脉动,此类速度脉动,我们可以将其理解为液体在一定方向上的周期性的较为激烈的变化,江门搅拌器,事实证明速度脉动对于促进混合有很大作用。速度脉动原来是湍流操作特有的现象,然而,复动式搅拌器和往复式搅拌器以其上、下往复运动或正、反转运动,在高黏度液体中产生了强的速度脉动,从而获得了高的混合效率。因此可以将剪切、循环和速度脉动归结为快速混合的二要素。这二要素是开发新型高黏度液体搅拌器的依据。


推进式搅拌器性能参数
常用尺寸:d/D=0.2至0.5(以0.33居多),s/d=1、2。
叶片数目:2、3、4(以三叶式居多)。
转速:常用运转速度n=10至500r/min,叶端线速度v=3至15m/s,高转速可达1750r/min,高叶端线速度为25m/s。
常用介质粘度范围:2000mpa.s。如转速在500r/min以下,所能适应的物料高黏度可达5乘10四次方mpa.s。
推进式搅拌器的优缺点
典型轴流桨,适合低黏度流体的混合、传热、循环、粒子悬浮、溶解等。
优点:低剪切、强循环、低能耗;
缺点:高速运行、细长轴时需带中间轴承或底轴承,整体浇铸叶轮,不宜在大型装置中独立使用,不过在大型搅拌器中却可以以侧入式批量应用。


高黏度和低黏度溶液搅拌器的选型
低黏度互溶液体混合,低黏度互溶液体的混合是一个均相纯物理混合过程,主要控制因素是循环速率,而桨叶的剪切作用是次要的。当两种液体黏度相差较大时,反应罐搅拌器,剪切的存在有利于较高黏度液体在整个容器内的分散,有利于湍流扩散的强化。常用的搅拌器有推进式、斜叶涡轮、长薄叶螺旋式、三叶后弯式等。当黏度低于0.4Pa.s,特别是0.1Pa.s以下时,常在湍流区操作,此时用推进式搅拌器为合适。这是由于推进式搅拌器直径小转速高,循环能力强且动力消耗少(在全挡板条件下操作),能形成强烈的循环流。如中央插入,d/D=0.25~0.33,C/D=1,H/D=1约等于1.2(D指容器内直径,d指搅拌器直径,H指液面高度,C指搅拌器距离容器底部的高度,以下同)。对大型容器中低黏度物料的混合采用斜入式时,d/D=O.25—0.33, H/D=1~1.2;采用旁入式时d/D=0.083~0.125或更小,H/D≤0.8。对黏度稍高或搅拌要求较高时,可采用宽叶的开启四斜叶涡轮式搅拌器,与推进式相比,剪切作用略有加强。四斜叶涡轮主要尺寸为:d/D—0.25~0.5,C/d=1,H/D=1NI.2,b/d=0.25(b为桨叶宽度)。也可采用长薄叶螺旋式搅拌器,它与斜叶涡轮式相比,在同样能耗下能提供较大的循环流量,因此对循环流量要求较高的场合,选用此类搅拌器较合适。当黏度稍高,或两种液体的粘度有相当差别时,可选用三叶后弯式搅拌器。该种搅拌器具有良好的循环流性能,又兼有一定的剪切作用,只是使用时要注意与之匹配的挡板型式和安装位置。桨式搅拌器因其结构简单,在小容量液体混合中仍广泛应用,但在大容量液体混合时,其循环能力就显得不足。
江门搅拌器-不锈钢搅拌器-中拓鼎承(优选商家)由山东中拓鼎承化工机械有限公司提供。江门搅拌器-不锈钢搅拌器-中拓鼎承(优选商家)是山东中拓鼎承化工机械有限公司今年新升级推出的,以上图片仅供参考,请您拨打本页面或图片上的联系电话,索取联系人:韩经理。