




传统提取算法,阙值提取法是图像分割中使用较为广泛的方法,通过阙值的设置,将处于阙值区间内的像素区域归纳为同一区域,从而分割图像。此类算法的缺陷在于只考虑了目标的灰度信息,从而缺少鲁棒性。在这类算法中,食品农残检测,如何获取一个合理的阙值是算法成功的关键,手动选取阙值无法具备通用性,易受环境变化的影响,主流的选取阙值的方法有类间方差法和熵阙值分割法。
基于深度学习的图像分割方法,主要研究领域是在于语义分割,即根据图片内容,将图像分为多个有含义的部分,对于农产品分类而言有着革命性的意义。全卷积网络FCN是深度学习用于进行图像分割的先驱,以分类模型AlexNet为基础,将其3层全连接层转化为反卷积层进行上采样,从而将输出有特征分类转化为区域特征热力图。
原子吸收光谱法简称AAS是一种仪器分析方法,主要与用于无机元素的分析的原子发射光谱法相辅相成,通过吸收光线的减弱情况来准确计算出样品中该元素的含量,具有检出限比较低、灵敏度高、准确度好等优点,是对无机化合物元素进行定量分析的主要手段。如谢莹等采用湿法消解玉米植物叶片样品,用AAS法测定了玉米叶片中的重金属元素 (Cu、Pb、Zn、Cr、Cd)含量,其相对标准偏差为1.1% ~7.7%,加标回收率也取得了满意的结果。

食品农残检测-多年经验|金标准由安徽省金标准检测研究院有限公司提供。安徽省金标准检测研究院有限公司位于安徽省合肥市高新区香樟大道211号香枫创意园A座。在市场经济的浪潮中拼博和发展,目前安徽金标准在咨询、调研中享有良好的声誉。安徽金标准取得全网商盟认证,标志着我们的服务和管理水平达到了一个新的高度。安徽金标准全体员工愿与各界有识之士共同发展,共创美好未来。