






六弧叶圆盘涡轮搅拌器
径流桨,适合气体分散、吸收等。
优点:持气量大、能耗低、可避免气穴产生、是否通气对其功率的影响较小
缺点;制作比较困难。
应用实例,应用于发酵罐、氧化釜、加氢釜等气液搅拌器中,可取代六直叶圆盘涡轮搅拌器以降低能耗。
各类涡轮搅拌器形式构造图文介绍
涡轮式搅拌器与桨式搅拌器相比,叶片数量更多,叶片种类更多,转速更高,所以其结构比桨式更复杂。各种型式的涡轮搅拌桨都是通过轮毂用键与止动螺钉连接于搅拌轴上,中转池搅拌器,同时在搅拌轴的底部用拧入轴端的螺栓或轴端螺母挡住轮毂。



桨式和涡轮式搅拌器传热系数关联式
早的搅拌罐传热关联式是由Chilton于1944年提出的,对于使用单层平桨、并有碟形封头的圆筒形搅拌罐,其被搅拌液体对罐壁和内冷盘管的表面传热系数关联式分别如下:
以后许多研究者改变搅拌器的形状和相对尺寸进行传热研究,提出了很多搅拌罐传热关联式,由于一个关联式只对应于一个几何构形,这些关联式不便使用。
20世纪60年代中至70年代初日本的水科笃郎和永田进治等提出了包含多种桨型和多个尺寸参数的统一关联式,如永田对于桨式和涡轮式两种叶轮,且罐内有挡板而无内冷管的情况,并Re大于100。得如下关联式:
对于罐内无挡板而有内冷盘管的情况,则物料对罐壁的表面传热系数关联式为:
当除去内冷管时,则须将上式的系数由0.51改成0.54。产生这6%的差别是由于内冷盘管的遮蔽效应。
永田也得出在Re>200,2 上式中包含了叶轮的多个几何参数,如叶径6、罐径D、叶轮离罐底度c、叶片倾角、叶片数孔。和液高等,大大拓宽了公式的适用范围。 20世纪70年代,日本的佐野雄二等对于桨式、涡轮式叶轮在湍流域的场合,生产搅拌器,进一步建立了罐内液体的单位质量搅拌功率ε与液体对罐壁和内玲管壁的表面传热系数的联系,得到了适用性广、且形式更简单的关联式: 式中,为被搅液对夹套的表面传热系数.W/(㎡.K);c为被搅液对内冷管壁的表面传热系数.W/(㎡.K);dc为内冷管外径.m;ε为单位质量被搅液消耗的搅拌功率,W/kg;v为被搅液运动黏度.㎡/s。 式(5- 17)计算物件时须以流体的本体温度和壁温的算术平均值作定性温度。 桨式搅拌器中的折叶桨亦多用扁钢制作(如图2-47).也有的采用角钢制作桨叶。角钢的抗弯强度比同样截面积的扁钢要好,将角钢以一定角度安放,水处理搅拌器,也可同样起到折叶桨的效果。折叶桨与桨轴的连接方式与平桨的相同。桨式的通用尺寸为桨宽与桨径之比b/dj= 0.10—0.25.加强筋板的长度可以是桨叶的全长,也可取桨长的一半。桨叶的厚度通常由强度计算决定。 三曲面轴流搅拌器 轴流桨,甘肃搅拌器,适合中低黏度流体的混合、传热、循环、粒子悬浮、溶解等。 优点:低剪切、强循环、低能耗,叶片可拆卸,可在大型搅拌槽中使用,中低运行转速。 缺点:叶片为曲面,制造成本高。 应用实例:在三叶推进式搅拌器的应用实例中,采用三叶推进式搅拌器需要中间轴承,而使用一个直径为1600mm的三曲面轴流型搅拌器,达到同样的循环量,其运行转速仅为50r/min,所需的电动机功率也为3kW,而搅拌轴为悬臂轴,无磨损问题。
水处理搅拌器-中拓鼎承-甘肃搅拌器由山东中拓鼎承化工机械有限公司提供。山东中拓鼎承化工机械有限公司是山东 淄博 ,化工设备的见证者,多年来,公司贯彻执行科学管理、创新发展、诚实守信的方针,满足客户需求。在中拓鼎承领导携全体员工热情欢迎各界人士垂询洽谈,共创中拓鼎承更加美好的未来。