






桨式和涡轮式搅拌器传热系数关联式
早的搅拌罐传热关联式是由Chilton于1944年提出的,对于使用单层平桨、并有碟形封头的圆筒形搅拌罐,其被搅拌液体对罐壁和内冷盘管的表面传热系数关联式分别如下:
以后许多研究者改变搅拌器的形状和相对尺寸进行传热研究,提出了很多搅拌罐传热关联式,由于一个关联式只对应于一个几何构形,这些关联式不便使用。
20世纪60年代中至70年代初日本的水科笃郎和永田进治等提出了包含多种桨型和多个尺寸参数的统一关联式,如永田对于桨式和涡轮式两种叶轮,且罐内有挡板而无内冷管的情况,并Re大于100。得如下关联式:
对于罐内无挡板而有内冷盘管的情况,则物料对罐壁的表面传热系数关联式为:
当除去内冷管时,则须将上式的系数由0.51改成0.54。产生这6%的差别是由于内冷盘管的遮蔽效应。
永田也得出在Re>200,2 上式中包含了叶轮的多个几何参数,如叶径6、罐径D、叶轮离罐底度c、叶片倾角、叶片数孔。和液高等,大大拓宽了公式的适用范围。 20世纪70年代,混合搅拌器,日本的佐野雄二等对于桨式、涡轮式叶轮在湍流域的场合,进一步建立了罐内液体的单位质量搅拌功率ε与液体对罐壁和内玲管壁的表面传热系数的联系,得到了适用性广、且形式更简单的关联式: 式中,为被搅液对夹套的表面传热系数.W/(㎡.K);c为被搅液对内冷管壁的表面传热系数.W/(㎡.K);dc为内冷管外径.m;ε为单位质量被搅液消耗的搅拌功率,W/kg;v为被搅液运动黏度.㎡/s。 式(5- 17)计算物件时须以流体的本体温度和壁温的算术平均值作定性温度。 开启涡轮搅拌器多是将叶片直接焊下轮毂上,折叶开启涡轮的叶片在焊接时,通常是在轮毂上开槽,立式搅拌器,叶片嵌入后施焊。小型开启涡轮也有整体铸造的,特别是折叶的,如大量生产,用铸造比焊接的更为方便。对于大直径的开启涡轮搅拌器,也可将全部叶片或径向对称的一对做成与轮毂可拆连接的,以便于安装. 双层折叶涡轮式搅拌器功率的计算 搅拌器双层折叶涡率计算 涡轮式搅拌器根据叶片倾角不同可分成上推式(PTU)和下压式(PTD)两种。双层叶轮有四种可能的组合,即PTD+PTD;PTU+PTU;PTU+PTD;PTD+PTU。对组合桨型符号的约定是:个出现的桨型为安装在下层的叶轮。实际应用中以PTD+PTD和PTU+PTD二种组合方式为多,而以PTU+PTD组合的混合效率,而PTD+PTU混合效率。在四枚宽0.1D挡板的条件下,二种组合叶轮的Np与L/D的关联式如式(3-29)和式(3-30)和图3-16和图3-17。可见对这二种组合折叶涡轮,其Np——L/D曲线均呈一凹形弧线,可用一二次曲线很好地拟合,式(3-29)的相关系数为0.995.式(3-30)的相关系数为0.963。 折叶涡轮搅拌器还常与圆盘涡轮和平桨等组合使用,组台时通常将折叶涡轮放在上层,同时将圆盘涡轮或平直叶开式涡轮等径向流叶轮放在下层可获得好的混合效果。 我们先来看看刮壁式搅拌釜结构。 说到刮壁式搅拌釜结构,我想起来今年年初的一个化工搅拌器的设计,搅拌釜为日本生产顺丁橡胶的C&R式反应器,采用螺带-导流筒式搅拌器,反应釜搅拌器,设有三重刮壁机构,即在导流筒内壁面、导流筒外壁面和搅拌器的内壁面都装有刮壁机构,使流体在导流筒内部产生很强的循环。当然,那种设计并不是,也可将化工搅拌器由螺带式搅拌器换成螺杆式搅拌器,以强制流体在导流筒内、外进行循环。 对于刮壁式搅拌釜来说,阜新搅拌器,刮板的形状与搅拌功率和传热效率之间有直接关系。当搅拌釜需要通过夹套撤除聚合热时,理想的刮壁作用是刮板将其刀口前面贴近传热壁面的冷流体刮起,并与搅拌釜中部的热流体均匀混合。我们曾设计并研究了多种形状刮板的传热效果如下图所示。研究结果表明,B结构的传热效率好。
反应釜搅拌器-阜新搅拌器-中拓鼎承(查看)由山东中拓鼎承化工机械有限公司提供。山东中拓鼎承化工机械有限公司坚持“以人为本”的企业理念,拥有一支高素质的员工队伍,力求提供更好的产品和服务回馈社会,并欢迎广大新老客户光临惠顾,真诚合作、共创美好未来。中拓鼎承——您可信赖的朋友,公司地址:山东省淄博市淄博经济开发区傅家镇,联系人:韩经理。