




基坑支护工程在工程建设中扮演着至关重要的角色。其主要作用有以下几点:
1.保证施工安全。通过有效的基坑支护,能确保施工人员和周边建筑的安全,防止土方坍塌等事故的发生;同时也能保障地下管线的正常运行和使用寿命不受影响或损坏的风险降低至低限度以内。保证了工程的顺利进行和安全稳定地运行;避免了不必要的损失和风险的发生以及安全隐患的存在等情况的出现,从而提高了整个工程项目的经济效益和社会效益的双赢局面形成和发展壮大及稳健运营的重要基础支撑力量之一等等各方面发挥着至关重要的作用和价值体现所在!其重要的功能价值不容小觑!成为不可或缺的一部分因素了哈~总之来说呢就是保证整体项目的顺利推进啦~起到了保驾护航的作用哦!!总之起到的作用是巨大的且无可替代的哟~~?????通过以上简述足以看出该环节在整个项目中所占据的地位也是非常重要的喔可别忘了做好相关的准备工作和完善后续的工作安排问题就可以啦??????。以更好地服务于广大建筑行业及相关产业的持续稳定发展需求及人民美好生活的向往的实现途径及其深远影响力等因素之考虑呀……?"希望符合您的要求)

深基坑支护技术对比:排桩+内支撑 vs 地下连续墙,如何选型更省钱?
好的,这里是对深基坑支护技术“排桩+内支撑”与“地下连续墙”在选型省钱方面的对比分析:
省钱策略:在满足安全、变形控制要求的前提下,选择综合成本的方案。
1.“排桩+内支撑”的省钱优势:
*材料成本较低:排桩(钻孔灌注桩、预制桩等)本身是线状结构,单位延米混凝土和钢筋用量通常显著低于实心板状的地下连续墙。
*施工设备及效率:排桩施工设备(旋挖钻、冲击钻、静压桩机等)相对常见,租赁或购置成本可能低于大型、的地下连续墙成槽机(如抓斗、铣槽机)。排桩施工速度通常更快,工期缩短可节省间接成本(管理费、设备租赁费等)。
*内支撑的灵活性:钢支撑可回收周转使用,摊销成本较低(尤其对多基坑项目或支撑层数多时)。混凝土支撑虽不可回收,但截面尺寸和配筋可优化设计。内支撑体系在平面上布置相对灵活,可避开局部障碍物。
*地质适应性(有利条件下):在土层稳定、地下水不丰富、无需特别深嵌固的地层中,基坑锚杆支护,排桩施工简便、成本可控。
2.“地下连续墙”的省钱潜力:
*“两墙合一”效应:这是地下连续墙省钱点。当设计为“两墙合一”(即同时作为基坑支护结构和地下室外墙)时,可以完全省去地下室外墙的建造费用(包括土方开挖、模板、混凝土、防水、回填等)。在深基坑、大型地下室项目中,这笔节省的费用往往非常巨大,足以抵消甚至远超其作为支护结构本身的较高成本。
*减少支撑/锚索费用:地下连续墙自身刚度极大,基坑支护,变形控制好。对于不太深的基坑,可能只需1-2道支撑甚至无需支撑(悬臂),或仅需较少的锚索,节省了内支撑/锚索的材料、施工和拆除费用。
*复杂地质/环境下的优势:在深厚软土、高承压水、砂层、临近重要建(构)筑物等对止水、变形要求极高的场景下,地下连续墙的可靠性和止水性能是排桩难以比拟的。虽然其单方造价高,但避免了因排桩止水失败、变形过大导致的风险处理费用(如抢险、赔偿、工期延误),从风险成本角度看可能更“省钱”。
*施工空间受限:当红线紧贴边界或场地极其狭窄无法施作锚索时,地下连续墙(结合内支撑)可能是可行方案,此时其成本具有合理性。
选型更省钱的决策要点:
1.基坑深度与规模:
*浅~中等深度基坑:优先考虑排桩+内支撑(尤其钢支撑),成本通常更低。
*超深基坑、超大地下室:“两墙合一”的地下连续墙综合成本优势显著,是。
2.“两墙合一”可行性:项目是否允许且需要地下连续墙兼作结构外墙?这是决定性的经济因素。
3.地质水文条件:
*土层好、地下水少:排桩+内支撑经济性好。
*软土、流砂、承压水丰富、性地层:地下连续墙虽然单价高,但成功率高、风险小,综合成本可能更优。
4.环境要求(变形与止水):
*临近敏感建筑、管线:对变形控制要求极高时,地下连续墙的刚度优势使其成为(从而可能更经济)的选择。止水要求严苛时,连续墙是。
5.工期要求:排桩施工通常更快,缩短工期可省钱。连续墙成槽效率是关键。
6.支撑体系:钢支撑可周转则成本优势大。混凝土支撑或锚索成本需具体计算比较。
结论:
没有“更省钱”的技术,关键在于匹配项目特征。对于一般深度、地质条件尚可、无需“两墙合一”的项目,“排桩+内支撑”(尤其钢支撑)通常是更经济的选择。对于超深、超大基坑、地质水文条件复杂、环境敏感、尤其可实现“两墙合一”的项目,地下连续墙虽然初期支护造价高,但通过节省外墙费用、降低风险和减少支撑,其全寿命周期综合成本往往更具优势,基坑支护公司,是更“省钱”的明智之选。终决策必须基于详细的地勘、设计计算和的成本效益分析。

在邻近建筑物基坑工程中,将沉降差控制在3‰(千分之三)以内是一项高要求任务,需采取系统性、精细化措施:
1.强化支护结构刚度与稳定性:
*优选刚度大的支护形式:优先采用刚度大、变形控制能力强的支护结构,如地下连续墙、内支撑(钢筋混凝土或钢支撑)体系、刚度较大的排桩(结合止水帷幕)。对于深厚软土或高要求区域,可考虑“两墙合一”或增加内支撑道数、截面尺寸。
*严格刚度验算:设计时进行详尽的数值模拟分析(如PLAXIS、MidasGTS),考虑土-结构相互作用,确保支护结构在开挖各阶段的变形(尤其是水平位移)远小于规范允许值,为目标沉降差留足安全裕度。
*可靠连接节点:确保支撑与围护墙、支撑与立柱、角撑等节点连接牢固可靠,减少因节点变形导致的整体刚度损失。
2.控制地下水:
*有效止水:采用可靠的止水帷幕(如三轴、双轴搅拌桩,高压旋喷桩,地连墙),确保坑外地下水渗流路径被有效截断,防止水土流失引起周边土体固结沉降。
*精细化降水/回灌:
*降水:若需降水,采用小口径、深井点,严格控制降水速率和幅度,避免过快过猛降水导致周边土体有效应力剧增。必要时采用悬挂式帷幕减少降水影响范围。
*回灌:在邻近建筑物侧设置回灌井系统,建筑基坑支护,将抽出的地下水(或等量洁净水)及时、定量回灌至保护建筑下方含水层,维持其地下水位稳定,抵消因基坑降水引起的水位漏斗效应,是控制沉降手段之一。需控制回灌量与回灌压力。
3.优化土方开挖与支撑施工:
*“分区分块、分层分段、对称”:将大基坑划分为小区域,严格按设计顺序分层、分段开挖,每层开挖深度严格控制(尤其首层)。开挖后(如24小时内)完成该层支撑(或垫层)的安装和施加预应力,形成有效支撑前严禁超挖。
*对称均衡开挖:尤其在内支撑体系下,确保开挖和支撑施加在空间上尽量对称均衡,减少支护结构的不均匀受力变形。
*减小无支撑暴露时间与范围:这是控制变形的关键。采用“抽条开挖”、“盆式开挖”等工法,快速形成支撑。
4.建立严密动态监测与预警系统:
*监测:对支护结构顶部水平位移和竖向位移、深层水平位移(测斜)、支撑轴力、立柱隆沉、周边地表沉降、邻近建筑物沉降与倾斜(关键!)、地下水位等进行高频率、自动化监测。
*信息化施工:实时分析监测数据,与预测值对比。设定严格的预警值(如沉降差达2‰)和报警值(如2.5‰),一旦接近预警值,立即分析原因并启动预案(如加快支撑施工、调整开挖顺序、加强回灌等)。
*反馈设计:根据监测结果动态调整后续施工参数甚至支护方案(如增加临时支撑)。
5.邻近建筑物基础保护与预加固:
*隔断措施:在基坑与建筑物间施作隔离桩、树根桩或注浆加固带,形成一道隔断屏障,减小基坑变形对建筑物的直接影响。
*基础托换/加固:对特别重要或基础薄弱的邻近建筑,提前进行基础加固(如锚杆静压桩、注浆加固)或设置临时托换结构。
6.应急预案:
*制定详细的沉降超限应急预案,包括备用回灌能力、快速注浆加固设备与材料、备用支撑方案、人员疏散预案等,确保能快速响应。
总结:控制3‰沉降差的在于“刚、水、快、测”四字:刚性支护体系提供基础;水位控制(止水+降水/回灌)是;快速开挖支撑形成闭环是关键;全程测控信息化指导是保障。必须将设计、施工、监测、应急融为一体,实施全过程精细化管理。邻近建筑物的沉降监测是终检验标准,必须作为重中之重。

基坑支护-广东环科特种建筑工程-建筑基坑支护由广东环科特种建筑工程有限公司提供。广东环科特种建筑工程有限公司是从事“钢筋混凝土切割,混凝土打凿,建筑工程,房屋加固,错杆静压桩等”的企业,公司秉承“诚信经营,用心服务”的理念,为您提供更好的产品和服务。欢迎来电咨询!联系人:黎小姐。