





浪涌吸收器在通信防雷系统中的应用案例
某山区通信因地处雷电高发区域,频繁遭受雷击导致设备损坏,年均故障率高达15%。经现场勘查,雷电流主要通过交流供电线路、天馈线及信号线侵入,造成电源模块、射频单元等关键设备损毁。为提升防雷能力,技术人员在防雷系统中集成多级浪涌吸收器,构建了立体防护体系。
应用方案
1.电源线路防护:在交流配电箱入口处安装通流容量为40kA的压敏电阻型浪涌吸收器,泄放直击雷能量;直流配电单元端口加装TVS二极管,抑制残留浪涌电压。
2.天馈线防护:在馈线入口部署气体放电管型浪涌吸收器(响应时间≤25ns),并联于馈线屏蔽层与接地端,实现雷电流快速分流。
3.信号线防护:针对传输光端机的RJ45接口,采用箝位电压5V的半导体放电管,确保信号传输稳定性。
实施效果
改造后防雷能力显著提升:
-故障率下降:雷击导致的设备损坏率降低至3%以下,年均维护成本减少60%。
-系统稳定性增强:浪涌吸收器在雷雨季节累计动作120余次,有效阻断90%以上过电压冲击。
-经济效益显著:设备寿命延长30%,单站年运维成本节约超8万元。
总结
该案例通过浪涌吸收器的多级部署,结合接地网优化(接地电阻≤2Ω)及屏蔽措施,形成了“疏堵结合”的防护体系。未来可进一步引入智能监测模块,实时采集浪涌动作次数及残压数据,为防雷系统动态优化提供依据。此类方案已推广至区域50余座,成为高雷暴地区通信基础设施的标准配置。

氧化锌压敏电阻在交流与直流电路中的选型差异.
氧化锌压敏电阻(MOV)在交流(AC)与直流(DC)电路中的选型需基于电路特性、工作环境及保护需求进行差异化设计,主要体现在以下方面:
1.额定电压选择
-AC电路:需考虑电压的峰值而非有效值。例如,220V交流系统的峰值电压约为311V,因此压敏电阻的标称电压(如430V)需高于峰值并留有余量,以防止频繁误触发。此外,需关注电网波动和谐波影响。
-DC电路:电压相对稳定,标称电压需略高于系统工作电压(如24V系统选36V)。需注意直流电压无过零特性,长期工作可能导致压敏电阻发热,需严格匹配耐压值。
2.通流能力与能量耐受
-AC电路:瞬态过压(如雷击、开关浪涌)以高频脉冲为主,选型侧重峰值电流容量(如8/20μs波形下的通流能力)。同时需考虑重复脉冲下的老化问题。
-DC电路:过压可能由电感负载断开或电容充放电引起,持续时间较长,需关注能量吸收能力(Joule积分值)及长期耐压稳定性,避免持续漏电流导致热失效。
3.失效模式与安全性
-AC电路:压敏电阻失效后可能因交流过零特性而暂时恢复,但多次冲击后易老化,浪涌吸收器加工厂,需配合保险丝实现快速断路保护。
-DC电路:失效后易因持续短路引发过热甚至起火,需选用带脱离机构(如热熔断体)的集成型MOV,或串联熔断器提升安全性。
4.频率与寄生参数影响
-高频AC电路(如开关电源输入端):需评估压敏电阻的分布电容(通常1nF至数nF)对信号完整性的影响,必要时选择低电容型号。
-DC电路:重点规避长期偏置电压下的漏电流累积,优先选择低泄漏电流(<10μA)型号以降低静态功耗。
5.环境适应性
-AC系统(如电网设备)需满足更高等级的耐候性(如GB/T10193、IEC61051标准),而DC应用(如光伏逆变器)需关注宽温度范围(-40℃~85℃)下的稳定性。
总结:AC选型侧重瞬态脉冲耐受与电压峰值匹配,DC选型强调长期稳定性与失效保护机制,浪涌吸收器工厂,需结合实际工况参数与安全规范综合考量。

浪涌吸收器(SurgeAbsorber)是一种用于抑制瞬态过电压的电子保护器件,其功能是将电路中的异常高电压能量快速吸收或泄放,无锡浪涌吸收器,从而保护敏感电子设备免受浪涌冲击的损害。其工作原理主要基于非线性电阻特性、能量泄放和电压钳位机制。
1.非线性电阻特性
常见的浪涌吸收器件如压敏电阻(MOV,MetalOxideVaristor)和瞬态抑制二极管(TVSDiode)具有非线性伏安特性。在正常电压范围内,其电阻值极高,仅允许微小漏电流通过;当电压超过阈值(如雷击、开关浪涌等瞬态过压),其电阻值急剧下降,形成低阻抗通路,将大部分浪涌电流旁路到地,从而限制电压升高。
2.能量吸收与泄放
浪涌吸收器通过将瞬态能量转化为热能或通过接地路径泄放。例如:
-压敏电阻:利用氧化锌晶粒的半导体特性,在高电压下晶粒间形成导电通道,吸收能量并转化为热量。
-气体放电管(GDT):通过电离内部惰性气体产生电弧放电,将高能量浪涌直接泄放到地线。
-TVS二极管:基于雪崩击穿效应,在纳秒级时间内将过电压钳位至安全范围,同时吸收瞬时大电流。
3.电压钳位与响应时间
浪涌吸收器的关键参数是钳位电压(ClampingVoltage)和响应速度。例如,TVS二极管响应时间可达1皮秒至1纳秒,远快于压敏电阻(约25纳秒),浪涌吸收器价格,适合保护高频电路。当瞬态电压超过钳位值时,器件迅速导通,将电压限制在设备耐受范围内,避免绝缘击穿或元件烧毁。
4.多级协同保护
在实际应用中,常采用多级防护策略:
-级(如GDT):泄放大部分高能浪涌(如雷电)。
-第二级(如MOV):进一步吸收剩余能量。
-第三级(如TVS):精细钳位电压,保护芯片。
5.应用注意事项
-选型匹配:需根据电路工作电压、浪涌能量等级(如8/20μs波形测试)选择器件。
-寿命与老化:压敏电阻多次吸收浪涌后性能可能退化,需定期检测。
-接地与布局:低阻抗接地路径和短引线设计可提升保护效果。
总结而言,浪涌吸收器通过快速响应、能量泄放和电压钳位三重机制,将瞬态过电压抑制在安全阈值内,是电子系统防雷击、抗电磁干扰(EMI)的关键组件。

浪涌吸收器价格-无锡浪涌吸收器-广东至敏电子(查看)由广东至敏电子有限公司提供。广东至敏电子有限公司拥有很好的服务与产品,不断地受到新老用户及业内人士的肯定和信任。我们公司是商盟认证会员,点击页面的商盟客服图标,可以直接与我们客服人员对话,愿我们今后的合作愉快!