




太阳能监控杆可以使用固态电池。
固态电池具有高能量密度、长循环寿命、安全性高等优点。与传统锂离子电池相比,固态电池在安全性、能量密度和循环寿命等方面具有显著优势,能够有效提高太阳能监控杆的续航能力,降低蓄电池的容量需求,减少更换蓄电池的频率,降低维护成本。此外,固态电池在高温、低温等恶劣环境下仍能保持良好的性能,降低了太阳能监控杆在天气下的故障率。
不过,固态电池目前也存在一些局限性,如成本较高、技术成熟度有待提高等,这在一定程度上限制了其在太阳能监控杆领域的广泛应用。













监控杆风荷载计算是先确定基本风压,安防监控立杆,再结合体型系数、风振系数等参数,通过公式计算总风荷载,杆监控立杆,具体步骤如下:
1. 确定基本风压(w?):
根据监控杆安装地点的《建筑结构荷载规范》(GB 50009),查取当地50年一遇的基本风压值(单位:kN/m2),如北京w?约0.55kN/m2,沿海地区数值更高。
2. 计算风荷载标准值(w_k):
采用公式:w_k = β_z × μ_s × μ_z × w?,其中各参数含义如下:
- β_z:风振系数,监控杆属柔性结构(高宽比>5),需考虑风致振动,通常取1.5~2.5(具体按规范计算或简化取值);
- μ_s:体型系数,圆形杆取0.7(迎风面),带矩形设备(如摄像头)取1.2~1.5;
- μ_z:风压高度变化系数,根据杆顶高度查规范,如10m高取1.0,20m高取1.25。
3. 计算总风荷载(F_w):
分杆体和设备两部分计算,公式为F_w = w_k × A(A为迎风面积):
- 杆体:A = 杆身直径 × 杆身高度(或平均直径 × 高度);
- 设备:A = 设备迎风投影面积(如摄像头按长×宽计算);
- 总风荷载 = 杆体风荷载 + 设备风荷载。
4. 验证结构强度:
将总风荷载转化为杆底弯矩(弯矩 = 总风荷载 × 杆顶高度),与监控杆材料的许用弯矩对比,确保满足强度要求。









为25W设备配置太阳能监控杆系统,需结合日均光照时长(默认4-5小时,国内多数地区均值)和续航需求(建议3-5天阴雨天备份),配置如下:
1. 太阳能板:建议50W-100W(单晶硅优先)
- 计算逻辑:设备日均耗电量=25W×24h=600Wh;
太阳能板日均发电量需覆盖耗电量+充电损耗(约20%),即需≥600Wh÷(4h光照×0.8转换效率)=187.5Wh;
考虑阴雨天冗余,选择50W-100W单晶硅太阳能板(单晶硅转换,约18%-22%,适配户外复杂光照),可满足日均发电200Wh-400Wh,兼顾效率与成本。
2. 蓄电池:建议60Ah-100Ah(12V铅酸/锂电池)
- 计算逻辑:3天阴雨天备用耗电量=600Wh/天×3天=1800Wh;
蓄电池容量(Ah)=总备用耗电量÷电池电压(12V)÷放电深度(铅酸取0.5,锂电取0.8,避免过放损坏);
- 若选12V铅酸电池:需≥1800Wh÷12V÷0.5=300Ah?(此处修正:实际需结合太阳能板充电补充,常规配置为12V 60Ah-80Ah铅酸电池,成本低、适配性强);
- 若选12V锂电池:需≥1800Wh÷12V÷0.8≈187.5Ah?(实际简化配置为12V 50Ah-100Ah锂电池,体积小、寿命长,适合空间有限场景);
原则:确保电池总容量能支撑设备3-5天不间断运行,4m监控立杆,且与太阳能板发电量匹配。
3. 控制器:建议12V/24V 10A-20A(MPPT型优先)
- 要求:控制器需匹配电池电压(优先12V,监控立杆,与设备、太阳能板电压一致,避免损耗),额定电流需覆盖太阳能板大输出电流(如100W太阳能板12V系统下,大电流≈100W÷12V≈8.3A);
- 型号选择:12V 10A-20A控制器(若太阳能板功率超100W,可选20A);
- 类型推荐:








希科节能(图)-杆监控立杆-监控立杆由山东希科节能科技有限公司提供。山东希科节能科技有限公司在道路灯具这一领域倾注了诸多的热忱和热情,希科节能一直以客户为中心、为客户创造价值的理念、以品质、服务来赢得市场,衷心希望能与社会各界合作,共创成功,共创辉煌。相关业务欢迎垂询,联系人:谢经理。