









除了靠近液面中心区以外,在机械搅拌器各搅拌速度下,液体的流型是相似的,因此,可假设流速的增大与叶轮转速成正比。大周向速度等于2πNrc,因而罐内任何位置的u1值可方便地由公式求得。八平直叶涡轮在无挡板搅拌罐内的流速分布如图2-3所示,图下半部的(c)表示周向流,流线越密表示周向速度越大,脱硫搅拌器,(b)表示由叶片排出的径向流遇到罐壁后改成轴向流,再返回叶轮,从而形成上、下循环流动,图中(a)表示在不同液体高度上周向流流速的分布。
这两种叶轮的设计原理是相同的,当叶轮旋转时,叶片的端部和根部分别把液体向相反的方向推进,促进液体形成轴向循环,由于MIG式和INTERMIC式叶轮常是多层地使用,大兴安岭搅拌器,因此从整个叶轮看,这两种叶轮类似于一个非连续的内外单螺带叶轮或非连续的螺带-螺杆式叶轮。这两种叶轮适合于低、中黏度液体,特别适合于过渡流域下操作。在过渡流域,在叶轮近旁有小的湍流区,在使用多层叶轮的场合,相邻的叶轮的湍流区能连接起来,形成全罐整体的轴向循环,故具有与内外单螺带叶轮相当的混合速率,化工搅拌器,另一方面这两种叶轮的功率准数小于内外单螺带,因此在过渡流域,其混合效率远高于内外单螺带叶轮。然而,当黏度很高,叶轮在层流域操作时,不锈钢搅拌器,相邻叶轮使液体产生的轴向流动不能衔接起来,不能使全罐形成整体的轴向循环,在相邻的叶轮之间有混合不良区,这时这两种叶轮的混合效果就比叶片连续的螺带式叶轮差得多了。因此,MIG式和INTERMIG式叶轮不宜在Re<100的情况下操作。

液-液体系对不锈钢搅拌器的要求类似于气-液体系,二者都需要高的界面积。所不同的是气泡与液滴所承受的浮力的差别。因为液-液体系的浮力不像气-液体系那样明显,液-液体系通常比气-液体系容易模拟。同样,流动区、液滴-凝并、界面积、液滴直径、质量传递系数等,都是重要的设计参数。
液-液体系的功率输入并不像气-液体系那样显得重要。由于两相密度差通常相差不大,不会有一相大量地集中在不锈钢搅拌器周围。
液滴的和液滴尺寸由不锈钢搅拌器的结构和输入功率决定。液滴的通常出现在不锈钢搅拌器桨叶或桨叶的尾涡中。通常不会出现在釜体静止区,而液滴的凝并会出现在釜的本体区。如果在桨叶前后形成非常高的压降,会出现现象,从而有非常小的液滴形成。
液滴的尺寸可以由不锈钢搅拌器的几何结构、功率输入、已进搅拌区和静止区的体积比控制。类似于气-液分散,随着不锈钢搅拌器叶片数的增加,搅拌区的比例提高,叶片的几何形状和叶片的角度影响搅拌的强度和性质,从而影响液滴尺寸。
化工搅拌器-中拓鼎承(在线咨询)-大兴安岭搅拌器由山东中拓鼎承化工机械有限公司提供。山东中拓鼎承化工机械有限公司在化工成套设备这一领域倾注了诸多的热忱和热情,中拓鼎承一直以客户为中心、为客户创造价值的理念、以品质、服务来赢得市场,衷心希望能与社会各界合作,共创成功,共创辉煌。相关业务欢迎垂询,联系人:李经理。