





压敏电阻(Varistor)是一种具有非线性伏安特性的电压敏感型电子元件,其功能是通过电阻值随电压变化的特性实现对电路系统的过压保护。其基本原理建立在半导体材料的特殊结构特性上,以氧化锌(ZnO)为基体材料,掺杂少量其他金属氧化物(如Bi?O?、Co?O?等),经高温烧结形成多晶结构。在微观层面,氧化锌压敏电阻压敏电阻,氧化锌晶粒与晶界层构成类似PN结的势垒结构,正常电压下晶界层的高电阻特性使压敏电阻呈现兆欧级阻值;当施加电压超过阈值(压敏电压)时,晶界势垒被击穿,载流子通过隧道效应或热激发越过势垒,压敏电阻,导致电阻骤降至欧姆级,形成低阻通路以泄放浪涌电流。
**非线性特性解析**
压敏电阻的伏安特性曲线可分为三个区域:
1.**预击穿区**(低电压区):电压低于阈值时,晶界势垒阻挡载流子迁移,漏电流(微安级),呈现近似绝缘体的线性特性。
2.**击穿区**(工作区):电压达到阈值后,晶界势垒发生雪崩击穿,电流随电压呈指数级增长(遵循I=KV^α关系,α为非线性系数,典型值20-50),电阻骤降3-5个数量级,实现电压钳位。
3.**回升区**(高电流区):超大电流导致晶粒发热,材料本征电阻主导,特性回归线性。
这种非线性源于势垒击穿的阈值效应与多晶结构的协同作用,使其具备自恢复特性:撤去过压后,晶界势垒可自行重建。此外,PTC压敏电阻,压敏电阻的双向对称特性使其可抑制正负极性浪涌,但受限于响应时间(纳秒级)和能量吸收容量,需配合其他保护器件使用。其非线性特性广泛应用于电源系统、通信设备及电子电路的瞬态过压防护,是抑制雷击、开关浪涌等瞬态干扰的元件。

氧化锌压敏电阻在交流与直流电路中的选型差异.
氧化锌压敏电阻(MOV)在交流(AC)与直流(DC)电路中的选型需基于电路特性、工作环境及保护需求进行差异化设计,主要体现在以下方面:
1.额定电压选择
-AC电路:需考虑电压的峰值而非有效值。例如,220V交流系统的峰值电压约为311V,因此压敏电阻的标称电压(如430V)需高于峰值并留有余量,抑制浪涌电流压敏电阻,以防止频繁误触发。此外,需关注电网波动和谐波影响。
-DC电路:电压相对稳定,标称电压需略高于系统工作电压(如24V系统选36V)。需注意直流电压无过零特性,长期工作可能导致压敏电阻发热,需严格匹配耐压值。
2.通流能力与能量耐受
-AC电路:瞬态过压(如雷击、开关浪涌)以高频脉冲为主,选型侧重峰值电流容量(如8/20μs波形下的通流能力)。同时需考虑重复脉冲下的老化问题。
-DC电路:过压可能由电感负载断开或电容充放电引起,持续时间较长,需关注能量吸收能力(Joule积分值)及长期耐压稳定性,避免持续漏电流导致热失效。
3.失效模式与安全性
-AC电路:压敏电阻失效后可能因交流过零特性而暂时恢复,但多次冲击后易老化,需配合保险丝实现快速断路保护。
-DC电路:失效后易因持续短路引发过热甚至起火,需选用带脱离机构(如热熔断体)的集成型MOV,或串联熔断器提升安全性。
4.频率与寄生参数影响
-高频AC电路(如开关电源输入端):需评估压敏电阻的分布电容(通常1nF至数nF)对信号完整性的影响,必要时选择低电容型号。
-DC电路:重点规避长期偏置电压下的漏电流累积,优先选择低泄漏电流(<10μA)型号以降低静态功耗。
5.环境适应性
-AC系统(如电网设备)需满足更高等级的耐候性(如GB/T10193、IEC61051标准),而DC应用(如光伏逆变器)需关注宽温度范围(-40℃~85℃)下的稳定性。
总结:AC选型侧重瞬态脉冲耐受与电压峰值匹配,DC选型强调长期稳定性与失效保护机制,需结合实际工况参数与安全规范综合考量。

突波吸收器(压敏电阻)是电子设备过电压保护的元件,其性能优劣直接影响系统的可靠性。以下三个关键参数决定了器件的选型与应用效果:
1.压敏电压(VaristorVoltage)
压敏电压是器件进入导通状态的阈值电压,通常标注为V1mA(1mA直流电流下的电压值)。该参数需根据被保护电路的工作电压选择,常规取值为额定电压的1.5-2倍。例如:220VAC系统多选用470V压敏电压。若选择过高会导致保护延迟,过低则易引发误动作。测试时需注意温度系数影响,标准测试条件为25℃环境。
2.通流容量(SurgeCurrentCapacity)
该参数表征器件承受瞬时大电流冲击的能力,以标准8/20μs波形测试的峰值电流值表示。工业级产品通流容量可达20-100kA,消费类电子则多为3-10kA。选型时需结合应用场景:雷击多发区需选更高通流量,同时需考虑多次冲击后的性能衰减。器件尺寸与通流容量正相关,大功率型号常采用多片并联结构。
3.残压比(ClampingRatio)
定义为限制电压与压敏电压的比值(Vresidual/V1mA),是衡量保护效能的指标。产品的残压比可低至1.8-2.5。该参数直接影响被保护器件承受的过电压幅值,在精密电路保护中需重点关注。降低残压比需优化氧化锌晶粒结构,但会牺牲部分通流能力,设计时需在保护阈值与耐受能力间取得平衡。
参数协同设计要点
实际应用中需建立参数间的动态关联模型:提高压敏电压会提升残压,但可能超出被保护器件耐压极限;增大通流量需同步考虑PCB布局的载流能力。推荐采用IEC61643标准进行多参数匹配验证,通过V-I特性曲线分析不同冲击场景下的箝位表现。对于高频电路还需评估寄生电容(通常100pF-10nF)对信号完整性的影响。合理的参数组合可使器件寿命达到10^4次冲击以上,实现。

氧化锌压敏电阻压敏电阻-压敏电阻-至敏电子公司由广东至敏电子有限公司提供。广东至敏电子有限公司是一家从事“温度传感器,热敏电阻”的公司。自成立以来,我们坚持以“诚信为本,稳健经营”的方针,勇于参与市场的良性竞争,使“至敏”品牌拥有良好口碑。我们坚持“服务至上,用户至上”的原则,使至敏电子在电阻器中赢得了客户的信任,树立了良好的企业形象。 特别说明:本信息的图片和资料仅供参考,欢迎联系我们索取准确的资料,谢谢!